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Abstract
The plane elasticity equations of two-dimensional quasicrystals of point group
10 are reduced to a single partial differential equation with eighth order by
introducing a stress potential function. Further, we develop the complex variable
function method for classical elasticity theory to that of the quasicrystals. The
complex representations of stress and displacement components of phonon
and phason fields in the quasicrystals are given. With the help of conformal
transformation, an exact solution for the elliptic notch of the quasicrystals is
presented. The solution of the Griffith crack problem as a special case of the
results is also observed. This work shows that the stress potential and complex
variable function methods are powerful for solving the complicated boundary
value problems of higher order partial differential equations originating from
quasicrystal elasticity.

1. Introduction

Quasicrystals were first observed as a new structure by Shechtman et al [1] and announced
in 1984. Since their discovery, they have attracted the extensive attention of researchers in
both experimental and theoretical work. The mechanical behaviour of the new solid phase, in
which elasticity and defects play a central role, is of fundamental importance. The elasticity
theory was discussed in many references (e.g. [2–9]), but some investigators developed various
methods ranging from the iterative method [10] and the Green function method [11] to the
Fourier transform method [12–14] for solving the relevant elasticity problems. Using these
methods, considerable exact analytic solutions for some dislocation and crack problems of
two-dimensional quasicrystals have been constructed. In [12–14] a so-called displacement
potential function was used and greatly simplified the complicated equations involving the
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elasticity. In quite a different version of these studies, Fan [15] developed a complex variable
function method with conformal mapping for solving the elasticity and crack problems of
one-dimensional hexagonal quasicrystals for static and dynamic cases. Afterwards, Liu and
Fan [16, 17] further developed the method for plane elasticity of other one-dimensional
quasicrystals and two-dimensional quasicrystals of point group 10mm. In the review given
by Fan and Mai [18] some summarization for the above development are addressed.

The elasticity of quasicrystals of point group 10 is more complicated than that of one-
dimensional quasicrystals and two-dimensional quasicrystals of point group 10mm. Methods
listed in the above references could not solve the notch problem for these kinds of materials.
For this reason, we here first introduce a stress potential function and obtain a simple and
effective formulation for the present problem. Furthermore, we develop a new complex
function method for treating more general complicated boundary value problems. A series
of exact solutions for notch and crack problems are constructed. The computational results
show that the formulation and the method are powerful for solving some higher order partial
differential equations coupled with complicated boundary conditions, which originate from the
elasticity and defect problems of quasicrystals.

2. General solution

Assume that the atom arrangement along the z-direction is periodic and along the x–y plane
is quasiperiodic, and denote x = x1, y = x2 and z = x3 for a two-dimensional decagonal
quasicrystal with point group 10. If the x3-axis represents the 10-fold symmetry axis, according
to quasicrystal elasticity theory [9] we have the equations of deformation geometry

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, wi j = ∂wi

∂x j
(1)

the equilibrium equations (if the body force is neglected)
∂σi j

∂x j
= 0,

∂Hi j

∂x j
= 0 (2)

and the generalized Hooke’s law

σi j = Ci jklεkl + Ri jklwkl , Hi j = Rkli jεkl + Ki jklwkl (3)

where ui and wi denote the phonon and phason displacements, σi j and εi j the phonon stresses
and strains, Hi j and wi j phason stresses and strains and Ci jkl , Ki jkl and Ri jkl the phonon,
phason and phonon–phason coupling elastic constants respectively. Assume that a plane notch
penetrates through the solid along the period direction (x3 direction). In this case, it is evident
that all the field variables are independent of x3. Considering the situation, the generalized
Hooke’s law (3) can be rewritten as follows [15, 18]

σxx = L(εxx + εyy)+ 2Mεxx + R1(wxx + wyy)+ R2(wxy − wyx) (4a)

σyy = L(εxx + εyy)+ 2Mεyy − R1(wxx +wyy)− R2(wxy −wyx) (4b)

σxy = σyx = 2Mεxy + R1(wyx − wxy)+ R2(wxx +wyy) (4c)

Hxx = K1wxx + K2wyy + R1(εxx − εyy)+ 2R2εxy (4d)

Hyy = K1wyy + K2wxx + R1(εxx − εyy)+ 2R2εxy (4e)

Hxy = K1wxy − K2wyx − 2R1εxy + R2(εxx − εyy) (4 f )

Hyx = K1wyx − K2wxy + 2R1εxy − R2(εxx − εyy) (4g)

in which

L = C12, M = (C11 − C12)/2 = C66. (4h)
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By the equations of deformation geometry (1), deformation compatibility equations are as
follows:

∂2εxx

∂y2
+ ∂2εyy

∂x2
= 2

∂2εxy

∂x∂y
,

∂wxy

∂x
= ∂wxx

∂y
,

∂wyx

∂y
= ∂wyy

∂x
. (5)

If we introduce the stress potential functions φ(x, y), ψ1(x, y) and ψ2(x, y) such as

σxx = ∂2φ

∂y2
, σyy = ∂2φ

∂x2
, σxy = σyx = − ∂2φ

∂x∂y

Hxx = ∂ψ1

∂y
, Hxy = −∂ψ1

∂x
, Hyx = −∂ψ2

∂y
, Hyy = ∂ψ2

∂x

(6)

then equilibrium equations (2) will be automatically satisfied.
Based on the generalized Hooke’s law (4) all strain components can be expressed by the

relevant stress components:

εxx = 1

4(L + M)
(σxx + σyy)+ 1

4c
[(K1 + K2)(σxx − σyy)− 2R1(Hxx + Hyy)

− 2R2(Hxy − Hyx)] (7a)

εyy = 1

4(L + M)
(σxx + σyy)− 1

4c
[(K1 + K2)(σxx − σyy)− 2R1(Hxx + Hyy)

− 2R2(Hxy − Hyx)] (7b)

εxy = εyx = 1

2c
[(K1 + K2)σxy − R2(Hxx + Hyy)+ R1(Hxy − Hyx)] (7c)

wxx = 1

2(K1 − K2)
(Hxx − Hyy)+ 1

2c
[M(Hxx + Hyy)− R1(σxx − σyy)− 2R2σxy] (7d)

wyy = − 1

2(K1 − K2)
(Hxx − Hyy)+ 1

2c
[M(Hxx + Hyy)− R1(σxx − σyy)− 2R2σxy] (7e)

wxy = 1

2c
[−R2(σxx − σyy)+ 2R1σxy] + 1

2(K1 − K2)
(Hxy + Hyx)+ M

2c
(Hxy − Hyx) (7 f )

wyx = 1

2c
[R2(σxx − σyy)− 2R1σxy ] + 1

2(K1 − K2)
(Hxy + Hyx)− M

2c
(Hxy − Hyx) (7g)

in which

c = M(K1 + K2)− 2(R2
1 + R2

2). (7h)

So the deformation compatibility equations (5) can be rewritten by the stresses σi j , Hi j ;
then by employing (6), one has(

1

2(L + M)
+ K1 + K2

2c

)
∇2∇2φ + R1

c

(
∂

∂y
�1ψ1 − ∂

∂x
�2ψ2

)

+ R2

c

(
∂

∂x
�2ψ1 + ∂

∂y
�1ψ2

)
= 0

(
c

K1 − K2
+ M

)
∇2ψ1 + R1

∂

∂y
�1φ + R2

∂

∂x
�2φ = 0

(
c

K1 − K2
+ M

)
∇2ψ2 − R1

∂

∂x
�2φ + R2

∂

∂y
�1φ = 0

(8a)

where

∇2 = ∂2

∂x2
+ ∂2

∂y2
, �1 = 3

∂2

∂x2
− ∂2

∂y2
, �2 = 3

∂2

∂y2
− ∂2

∂x2
. (8b)
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The equations (8) will be satisfied when we choose a new function G, which is called the
stress function, such that

φ = c1∇2∇2G,

ψ1 = −
(

R1
∂

∂y
�1 + R2

∂

∂x
�2

)
∇2G,

ψ2 =
(

R1
∂

∂x
�2 − R2

∂

∂y
�1

)
∇2G

(9a)

in which

c1 = c

K1 − K2
+ M (9b)

and

∇2∇2∇2∇2G = 0. (10)

The general solution of equation (10) is

G = 2 Re[g1(z)+ z̄g2(z)+ 1
2 z̄2g3(z)+ 1

6 z̄3g4(z)] (11)

where gi(z), (i = 1, 2, 3, 4) are four analytic functions of a single complex variable z ≡
x + iy = reiθ . The bar denotes the complex conjugate hereinafter, i.e. z̄ = x − iy = re−iθ .

3. The complex representation of stresses and displacements

Substituting expression (11) into (9) then into equation (6) leads to

σxx = −32c1 Re(	(z)− 2g′′′
4 (z)) (12a)

σyy = 32c1 Re(	(z)+ 2g′′′
4 (z)) (12b)

σxy = σyx = 32c1 Im	(z) (12c)

Hxx = 32R1 Re(
′(z)−	(z))− 32R2 Im(
′(z)−	(z)) (12d)

Hxy = −32R1 Im(
′(z)+	(z))− 32R2 Re(
′(z)+	(z)) (12e)

Hyx = −32R1 Im(
′(z)−	(z))− 32R2 Re(
′(z)−	(z)) (12 f )

Hyy = −32R1 Re(
′(z)+	(z))+ 32R2 Im(
′(z)+	(z)) (12g)

where


(z) = g(IV)2 (z)+ z̄g(IV)3 (z)+ 1
2 z̄2g(IV)3 (z)

	(z) = g(IV)3 (z)+ z̄g(IV)4 (z)
(12h)

in which the prime, double prime, triple prime and superscript (IV) denote the first to fourth
order differentiation of gi(z) to variable z; in addition
′(z) = d
(z)/dz.

We further derive the complex representations of displacement components of phonon and
phason fields. Equations (7a) and (7b) can be rewritten as follows

εxx = c2(σxx + σyy)− K1 + K2

2c
σyy − 1

2c
[R1(Hxx + Hyy)+ R2(Hxy − Hyx)] (7a-1)

εyy = c2(σxx + σyy)− K1 + K2

2c
σxx + 1

2c
[R1(Hxx + Hyy)+ R2(Hxy − Hyx)] (7b-1)

where

c2 = c + (L + M)(K1 + K2)

4(L + M)c
. (13)
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Substituting equations (12a), (12b) and (12d)–(12g) into (7a-1) and applying the first and
second formulae of equation (6), we have

ux = 128c1c2 Re g′′
4 (z)−

K1 + K2

2c

∂

∂x
φ

+ 32(R2
1 + R2

2)

c
Re[g′′′

3 (z)+ z̄g′′′
4 (z)− g′′

4 (z)] + f1(y) (7a-2)

uy = 128c1c2 Im g′′
4 (z)−

K1 + K2

2c

∂

∂y
φ

− 32(R2
1 + R2

2)

c
Im[g′′′

3 (z)+ z̄g′′′
4 (z)+ g′′

4 (z)] + f2(x). (7b-2)

Substituting equations (7a-2) and (7b-2) into (4c), then by employing (7d)–(7g) and (12d)–
(12g), one finds

−d f1(y)

dy
= d f2(x)

dx
.

Omitting trial functions f1(y), f2(x), which only give rigid body displacements, one obtains

ux + iuy = 32(4c1c2 − c3 − c1c4)g
′′
4 (z)− 32(c1c4 − c3)(g′′′

3 (z)+ zg′′′
4 (z)) (14a)

where

c3 = R2
1 + R2

2

c
, c4 = K1 + K2

c
. (14b)

Similarly, the complex representations of displacement components of phason fields can be
expressed as follows:

wx + iwy = 32(R1 − iR2)

K1 − K2

(z). (15)

4. Elliptic notch problem

y

p
x

Figure 1. An elliptic notch in a decagonal quasicrystal.

To illustrate the effect of the stress potential and complex variable function method on
the complicated stress boundary value problems of higher order partial differential equations
originating from quasicrystal elasticity, we here calculate the stress and displacement field
induced by an elliptic notch L( x2

a2 + y2

b2 = 1) (see figure 1), the edge of which is subjected
to a uniform pressure p.
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The boundary conditions of this problem can be expressed as follows:

σxx l + σxym = Xn, σyym + σxyl = Yn (x, y) ∈ L (16)

Hxxl + Hxym = Xh, Hyym + Hyxl = Y h (x, y) ∈ L (17)

where l = dy
ds ,m = − dx

ds , Xn = −p cos(n, x), Yn = −p cos(n, y) denote the components
of surface traction, p is the magnitude of the pressure, Xh and Y h are generalized surface
tractions and n represents the outer unit normal vector of any point of the boundary. As the
measurement of generalized tractions has not been reported so far for simplicity we assume
that Xh = 0, Y h = 0.

Similar to Muskhelishvili [19], by equations (9), (11) and (16), one has

g′′
4 (z)+ g′′′

3 (z)+ zg′′′
4 (z) = i

32c1

∫
(Xn + iYn) ds = − 1

32c1
pz z ∈ L . (18)

Taking the conjugate on both sides of equation (18) yields

g′′
4 (z)+ g′′′

3 (z)+ z̄g′′′
4 (z) = − 1

32c1
pz̄ z ∈ L . (19)

From equations (9), (11) and (17) we have

R1 Im
(z)+ R2 Re
(z) = 0 z ∈ L

−R1 Re
(z)+ R2 Im
(z) = 0 z ∈ L .
(20)

Multiplying the second formula of (20) by i and adding it to the first, one obtains


(z) = 0 z ∈ L . (21)

Because the function g1(z) does not appear in the displacement and stress formulae,
boundary equations (18), (19) and (21) are sufficient for determining the unknown functions
g2(z), g3(z) and g4(z). However, the calculation cannot be completed at the z-plane due to the
complexity of the evaluation; we must use the conformal mapping

z = ω(ζ ) = R0

(
1

ζ
+ mζ

)
(22)

to transform the exterior of the ellipse at the z-plane onto the interior of the unit circle at the
ζ -plane (refer to figure 2), where ζ = ξ + iη = ρeiϕ and R0 = a+b

2 ,m = a−b
a+b .

x

y

ab
θ

ϕ

1

ie

 – planez – plane

ϕσ =

ξ

ζ

η

Figure 2. Conformal mapping from the exterior of the elliptic hole at the z-plane onto the interior
of the unit circle at the ζ -plane.
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For simplicity, we introduce the following new symbols

g(IV)2 (z) = h2(z), g′′′
3 (z) = h3(z), g′′

4 (z) = h4(z).

And we have

hi (z) = hi(ω(ζ )) = �i (ζ ), h′
i (z) = �′

i (ζ )

ω′(ζ )
(i = 1, 2, 3, 4). (23)

Substituting (23) into (18), (19) and (21), then multiplying both sides of the equations by
1

2π i
dσ
σ−ζ , and integrating around the unit circle, we have

1

2π i

∫
γ

�4(σ ) dσ

σ − ζ
+ 1

2π i

∫
γ

�3(σ ) dσ

σ − ζ
+ 1

2π i

∫
γ

ω(σ)

ω(σ)

�4(σ ) dσ

σ − ζ

= − P

32c1

1

2π i

∫
γ

ω(σ) dσ

σ − ζ

1

2π i

∫
γ

�4(σ ) dσ

σ − ζ
+ 1

2π i

∫
γ

�3(σ ) dσ

σ − ζ
+ 1

2π i

∫
γ

ω(σ)

ω(σ)

�4(σ ) dσ

σ − ζ

= − P

32c1

1

2π i

∫
γ

ω(σ) dσ

σ − ζ

1

2π i

∫
γ

�2(σ )

σ − ζ
dσ + 1

2π i

∫
γ

ω(σ)

ω′(σ )
�′

3(σ ) dσ

σ − ζ

+ 1

2π i

∫
γ

ω(σ)
2
ω′′(σ )

ω′(σ )3
�′

4(σ )

σ − ζ
dσ = 0

(24)

where σ = eiϕ(ρ = 1) represents the value of ζ at the unit circle.
According to the Cauchy integral formula and analytic extension of complex variable

function theory, one can obtain the solution of equations (24)

�2(ζ ) = pR0

32c1

ζ(ζ 2 + m)[(1 + m2)(1 + mζ 2)− (ζ 2 + m)]
(mζ 2 − 1)3

�3(ζ ) = pR0

32c1

(1 + m2)ζ

mζ 2 − 1

�4(ζ ) = − pR0

32c1
mζ.

(25)

Utilizing the above mentioned results, the phonon and phason stresses can be determined at the
ζ -plane. We here only give a simple example, i.e. along the edge of notch (ρ = 1); there are
the phonon stress components such as

σϕϕ = p
1 − 3m2 + 2m cos 2ϕ

1 + m2 − 2m cos 2ϕ
, σρρ = −p, σρϕ = σϕρ = 0

which are identical to the well-known results of the classical elasticity theory.

5. Elastic field caused by a Griffith crack

The solution of the Griffith crack subjected to a uniform pressure can be obtained corresponding
to the case m = 1, R0 = a

2 of the above solution. For explicitness, we express the solution in
the z-plane. The inversion of transformation (22) is

ζ = 1

a
(z −

√
z2 − a2). (26)
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From equations (23), (25) and (26), we have

g(IV)2 (z) = − pa2

128c1

z2√
(z2 − a2)3

g′′′
3 (z) = − p

64c1

a2

√
z2 − a2

,

g′′
4 (z) = p

64c1

(√
z2 − a2 − z

)
.

(27)

So the stresses and the displacements can be expressed with a complex variable z (see
appendix A for details).

Similar to classical elasticity theory, we introduce three pairs of polar coordinates
(r, θ), (r1, θ1) and (r2, θ2) with their origins at the crack centre, at the right crack tip and at
the left tip, i.e. z = reiθ , z −a = r1eiθ1, z +a = r2eiθ2 , respectively. The analytical expressions
for the stress and displacement fields can then be obtained (see appendix B for details).

Moreover, the stress intensity factor and free energy of the crack can be evaluated as the
direct results of the solution. We here only list the stress intensity factor and energy release rate
as below

KI = √
πa p, G = (L + 2M)(K1 + K2)+ 2(R2

1 + R2
2)

8(L + M)c
(KI )

2. (28)

It is evident that the present solution covers the solution for point group 10mm quasicrystals,
or we can say that the solution of the latter is a special case of the present work.

6. Discussion and conclusion

Defects play a central role in the study of the mechanical behaviour of quasicrystals, which
is a very difficult problem due to their complicated configuration. It is well known that
the Green function method, the Fourier method and other methods cannot solve the notch
problem. In addition, the displacement potential function formulation is relatively complicated
and the notch problem is very hard to solve by this formulation even if one uses the complex
variable function method. To solve the problem it is necessary to develop an effective
theory and method. From this work, we can conclude that the stress potential and complex
variable function method are powerful for the complicated stress boundary value problem of
quasicrystals. Although the general solution (11) is expressed by four analytic functions, we
need only three of them to express the stress and displacement components of phason fields,
and two of them are necessary for phonon fields. This greatly simplifies the solution procedure
for more complicated problems as well.

The main purposes of the present study are to reveal the effect of the notch and the crack
on quasicrystals and to compare the current results with those for conventional materials. All
field variables for the notch problem are exactly determined in this paper. The solution of the
Griffith crack problem as a special case of the results is also given in appendix B. This indicates
that the distribution of the phonon stress field is identical to the corresponding results in linear
elasticity fracture mechanics (LEFM), while the phason stress field, which arises from the
coupling relationship between the phonon and the phason fields, is particular for quasicrystals
and also exhibits the square root singularity around the crack tip. The displacement field and
the energy release rate in quasicrystals are different from the well known results in LEFM.
After a little direct calculation, we can see that these quantities are respectively the sum of two
parts: one part in agreement with the results of their counterparts in LEFM, and the other
produced by the phonon–phason coupling relationship in quasicrystals. In the case of the
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critical state, since Gcritical = 2γ for brittle materials (for example see [20]), with γ denoting
the unit surface energy, from equation (28) we know that, owing to the contribution of phonon–
phason coupling, the unit surface energy γ for quasicrystals with point 10 is greater than that
for conventional crystals with the same phonon elastic constants and fracture toughness. The
above results show that the conclusion in LEFM cannot be directly applied to quasicrystal linear
elasticity fracture mechanics (QLEFM). Of course, if the coupling elastic constants R1, R2

are so small that they can be ignored, the present results reduce to the well known results in
LEFM. Formulae in appendix B are exact solutions for any point, from which one can obtain
the asymptotic solutions for a crack tip r1/a � 1. When R2 = 0, R1 = R, the material is
reduced to the point 10mm quasicrystals, and the results are reduced to those for point group
10mm.
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Appendix A. The details of complex representation of the crack solution

From (12) and (27), the stress fields can be obtained as follows

σxx = −32c1 Re(	(z)− 2g′′′
4 (z)

= −32c1 Re

[
pa2(z − z̄)

64c1

√
(z2 − a2)3

− p

32c1

(
z√

z2 − a2
− 1

)]

= p Re

(
z√

z2 − a2
− ia2y√

(z2 − a2)3
− 1

)
(A.1)

σyy = 32c1 Re(	(z)+ 2g′′′
4 (z))

= 32c1 Re

[
pa2(z − z̄)

64c1

√
(z2 − a2)3

+ p

32c1

(
z√

z2 − a2
− 1

)]

= p Re

(
z√

z2 − a2
+ ia2y√

(z2 − a2)3
− 1

)
(A.2)

σxy = σyx = 32c1 Im	(z)

= p Im
ia2y√

(z2 − a2)3
(A.3)

Hxx = 32R1 Re(
′(z)−	(z))− 32R2 Im(
′(z)−	(z))

= pa2

[
R1 Re

(
3z(z − z̄)2

4c1

√
(z2 − a2)5

− z − z̄

c1

√
(z2 − a2)3

)

− R2 Im

(
3z(z − z̄)2

4c1

√
(z2 − a2)5

− z − z̄

c1

√
(z2 − a2)3

)]
(A.4)

Hxy = −32R1 Im(
′(z)+	(z))− 32R2 Re(
′(z)+	(z))

= −pa2

(
R1 Im

3z(z − z̄)2

4c1

√
(z2 − a2)5

+ R2 Re
3z(z − z̄)2

4c1

√
(z2 − a2)5

)
(A.5)
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Hyx = −32R1 Im
(

′(z)−	(z)

) − 32R2 Re(
′(z)−	(z))

= −pa2

[
R1 Im

(
3z(z − z̄)2

4c1

√
(z2 − a2)5

− z − z̄

c1

√
(z2 − a2)3

)

+ R2 Re

(
3z(z − z̄)2

4c1

√
(z2 − a2)5

− z − z̄

c1

√
(z2 − a2)3

)]
(A.6)

Hyy = −32R1 Re(
′(z)+	(z))+ 32R2 Im(
′(z)+	(z))

= pa2

(
−R1 Re

3z(z − z̄)2

4c1

√
(z2 − a2)5

+ R2 Im
3z(z − z̄)2

4c1

√
(z2 − a2)5

)
. (A.7)

By equations (14), (15) and (27), we have

ux + iuy = p

2

(
1

L + M
− c3

c1

)
(
√

z2 − a2 − z)

− p

2

(
c4 − c3

c1

) (
z̄

(
z√

z2 − a2
− 1

)
− a2

√
z2 − a2

)
(A.8)

wx + iwy = − pa2(R1 − iR2)

4c1(K1 − K2)

(z − z̄)2√
(z2 − a2)3

. (A.9)

Appendix B. The details of real representation of the crack solution

From (A.1)–(A.9), the stress fields can be expressed as

σxx = p[r(r1r2)
− 1

2 cos(θ − θ̄ )− a2r(r1r2)
− 3

2 sin θ sin 3
2 θ̄ − 1] (B.1)

σyy = p[r(r1r2)
− 1

2 cos(θ − θ̄ )+ a2r(r1r2)
− 3

2 sin θ sin 3
2 θ̄ − 1] (B.2)

σxy = σyx = pa2r(r1r2)
− 3

2 sin θ cos 3θ (B.3)

Hxx = − R1 pa2

c1
(3r 3(r1r2)

− 5
2 sin2 θ cos(θ − 5θ̄ )+ 2r(r1r2)

3
2 sin θ sin 3θ̄ )

+ R2 pa2

c1
(3r 3(r1r2)

− 5
2 sin2 θ sin(θ − 5θ̄ )+ 2r(r1r2)

− 3
2 sin θ cos 3θ̄ ) (B.4)

Hxy = 3pa2

c1
r 3(r1r2)

− 5
2 sin2 θ [R1 sin(θ − 5θ̄ )+ R2 cos(θ − 5θ̄ )] (B.5)

Hyx = R1 pa2

c1
(3r 3(r1r2)

− 5
2 sin2 θ sin(θ − 5θ̄ )+ 2r(r1r2)

− 3
2 sin θ cos 3θ̄ )

+ R2 pa2

c1
(3r 3(r1r2)

− 5
2 sin2 θ cos(θ − 5θ̄ )+ 2r(r1r2)

− 3
2 sin θ sin 3θ̄ ) (B.6)

Hyy = 3pa2

c1
r 3(r1r2)

− 5
2 sin2 θ [R1 cos(θ − 5θ̄ )− R2 sin(θ − 5θ̄ )] (B.7)

in which θ̄ = θ1+θ2
2 .

The displacement fields can be calculated using equations (A.8) and (A.9) as

ux = p

2

(
1

L + M
− c3

c1

)
(r1r2)

1
2 cos θ − p

2

(
1

L + M
− c4

)
r cos θ

− p

2

(
c4 − c3

c1

)
(r 2 − a2)(r1r2)

− 1
2 cos θ (B.8)
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uy = p

2

(
1

L + M
− c3

c1

)
(r1r2)

1
2 sin θ − p

2

(
1

L + M
− c4

)
r sin θ

− p

2

(
c4 − c3

c1

)
(r 2 − a2)(r1r2)

− 1
2 sin θ (B.9)

wx = pa2

c1
r 2(r1r2)

− 3
2 sin2 θ(R1 cos 3θ + R2 sin 3θ) (B.10)

wy = pa2

c1
r 2(r1r2)

− 3
2 sin2 θ(R1 sin 3θ − R2 cos 3θ). (B.11)
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